Vinaora Nivo Slider

The Cardno ChemRisk View

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Archives
    Archives Contains a list of blog posts that were created previously.
  • Login
    Login Login form
Recent blog posts

Posted by on in Centers of Excellence
Keller and Heckman and Cardno ChemRisk are pleased to announce a seminar addressing Strategic Implications of TSCA Modernization on January 24, 2017 in Houston TX. Join Keller and Heckman's attorneys and scientists and Cardno ChemRisk's scientists for a comprehensive program on how business strategies will be affected by the new TSCA Modernization Act. This seminar have been especially designed for senior managers and in-house counsel to understand the changed landscape and the seminar will provide attendees with essential, insights into EPA's direction and challenges in implementing the new legislation.

Program highlights include:

1. Changes in Statutory Requirements

2. Changes in New Chemical Review

3. Wherefore Existing Chemicals

4. New Requirements for Confidential Business Information (CBI)

5. How to Strategically Prepare For the Risk Evaluation Process

6. Supply Chain Challenges

Following the first day, we will be offering an additional two-day seminar on January 25-26, 2017 for regulatory staff and scientists, titled Compliance Requirements for TSCA Modernization Seminar. The comprehensive program will focus on how changes in EPA's authority and responsibilities are changing the landscape for new chemicals and how EPA will regulate existing chemicals under the new TSCA Modernization Act. This two-day seminar is especially designed for technical staff and managers who are responsible for regulatory compliance. The program highlights include:

1. Changes in EPA's Statutory mandates

2. Changes in New Chemical Review

3. Wherefore Existing Chemicals

4. Confidential Business Information (CBI) Challenges

5. What's Going To Happen in Risk Evaluation?

6. PMN and Exemptions: New Data Requirements?

7. Inventory Changes and Updates

8. New Recordkeeping Requirements

9. Hazard Assessment

10. New Exposure Assessment Challenges

11. Risk Prioritization

12. Risk Assessments - Novel Approaches

A detailed program agenda will be released soon! Please fill out our form to join the notification list, or contact , or  for more information
Hits: 1783
Rate this blog entry:
0

Posted by on in Centers of Excellence

Posted on behalf of author Rachel Novick.

...
Continue reading
Hits: 812
Rate this blog entry:
0

Posted by on in Centers of Excellence

Keller and Heckman LLP and Cardno ChemRisk present a webinar series on the changes to the Toxic Substances Control Act (TSCA) resulting from the June 22, 2016 passage of the Frank R. Lautenberg Chemical Safety for the 21st Century Act.


Next Week’s Topic: PMN Review and Review Period Issues

Section 5 of TSCA has changed!  Before a new substance is allowed onto the market EPA must now make "an affirmative finding of safety" under a new risk-based safety standard. EPA must also consider “conditions of use,” and “potentially exposed or susceptible subpopulations," but not cost, availability of alternatives, or other non-risk factors. Since the changes in the law, many new substances will be cleared only after issuance of section 5(e) orders, which may impose restrictions on manufacture / import volume, water release, and occupational safety and health practices.  As before, the Agency will make conservative assumptions in predicting toxicity and exposure, necessitating a more strategic approach to PMN management and chemical risk assessment including identification of existing data and more accurate descriptions of applications and uses, and filling data gaps using read-across approaches or development of new toxicological data. Topics will include:

·         Changes to the New Chemical Review Process

·         The New Standard of Review

·         New Data Requirements

·         More Surprises to Come

·         What Manufacturers Should Do

Registration for this program is complimentary, but required. Click here to register today.

Webinar Details:

Date: October 12, 2016
Time: 1:00 PM ET
Duration: 30 Minutes
Hosts: Keller and Heckman with Cardno ChemRisk


Webinar Description:

The TSCA 30/30 webinar will be presented by the Keller and Heckman LLP's TSCA attorneys and Cardno ChemRisk Scientists.  Keller and Heckman LLP's TSCA Chemical Control Practice Group is the leading TSCA and Chemical Control legal firm with offices around the world, Serving Business Through Law and Science®. Cardno ChemRisk is a scientific consulting firm that is respected worldwide for its risk assessment experience, technical capabilities, industry leadership and pioneering spirit.

For more information please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

...
Continue reading
Hits: 1835
Rate this blog entry:

Posted by on in Centers of Excellence
This posting is the final installment of a three-part series on formaldehyde emissions from hardwood plywood (HWPW), medium-density fiberboard (MDF), and particleboard (PB), collectively called composite wood products. This series focuses on the benefits of applying computer modeling tools to the interpretation of formaldehyde emission data, and subsequent risk management decisions.

Part 3: Five Reasons Why Computer Modeling is an Essential Tool for Manufacturers, Importers and Distributors of Composite Wood Products

This posting is last of a three-part series on formaldehyde emissions from hardwood plywood (HWPW), medium-density fiberboard (MDF) and particleboard (PB), collectively called composite wood products. Starting in the summer of 2017, manufacturers, distributors and importers of composite wood products will be subject to the new Emission Standards for Composite Wood Products posted as a pre-publication final rule on July 27, 2016 as Title VI of the Toxic Substance and Control Act (TSCA). The emission standards will mandate that wood products within the scope of the rule comply with emission test requirements conducted under prescribed conditions. The emission standard is consistent with and modeled after a similar existing regulation previously promulgated by California Air Resources Board (CARB) as an Airborne Toxic Control Measure (ATCM).

There are five important reasons why companies in the composite wood product supply chain should consider exposure modeling as part of their regulatory compliance and due diligence strategy. 

#1: Understand the contribution of emissions from your product to overall air quality

Computational models can help manufacturers, distributors and retailers assess the specific contribution of their product to indoor air quality in the environment for which the product is intended, which is likely less than what would be predicted by the controlled emissions tests that will be required by U.S. EPA. Under real-world conditions, formaldehyde emissions from consumer products are affected by aging of the material, interactions between materials, and attenuation of airborne concentration through loss of formaldehyde to adsorptive surfaces. Exposure models are an invaluable tool that can be used to understand how the introduction of a new product into a residence or workplace will affect air quality.

#2: Evaluate the effect of environmental factors on your product   

Environmental factors such as temperature, humidity, and fresh air turnover can alter how emissions from composite wood products affect indoor air quality. Exposure modeling can be very useful for understanding how a specific product may respond to changes in the environment.  For example, modeling can be used to predict the impact of a range of plausible and worst case scenario conditions. This knowledge can be very useful for responding to customer complaints, or in the preparation of product quality assessments.

#3: Assess emissions over the lifetime of a product

The controlled emissions tests used to comply with voluntary or regulatory standards do not consider the decrease in formaldehyde emissions that occur as the product ages with time. Exposure models provide useful information on the contribution of a product to indoor air formaldehyde concentrations over the lifetime of the product, not just when it is newly installed. This information can be very useful for understanding the length of time a product is likely to affect indoor air concentrations, or in the assessment of lifetime exposure.

#4: Interpret air concentration measurements that may have been collected by others    

Indoor air measurements can be commissioned by building owners or consumers to support a complaint or product defect claim. Alternatively, products may be removed by the owner and submitted for analysis in a laboratory. Room measurements or product samples collected by building owners are difficult to interpret because formaldehyde is used as a resin or preservative in a wide variety of consumer products, occurs naturally in wood, and is a component of ambient outdoor air. A single air sample collected in a room captures all sources formaldehyde, and is not specific to a product of concern.

It is noteworthy that low emitting formaldehyde sources can capture formaldehyde from other sources, and subsequently reemit formaldehyde that was not present in the original product.  Both indoor air measurements and tests of used products are impacted by these other sources. Exposure modeling can be a useful tool for understanding how a specific product may have contributed to a measured indoor air concentration. Similarly, modeling can be used to understand whether a sample of a used product may have been impacted by environmental formaldehyde.

#5: Develop an action plan to address non-compliant products

The existing CARB and newly finalized U.S. EPA emissions standards have many steps in place to prevent non-compliant products from entering the chain of commerce. The possibility exists, however, that a non-compliant product will be sold to consumers and subject to a customer complaint or regulatory compliance action. In these cases, exposure modeling is a very valuable tool for assessing whether a non-compliant product will have a meaningful impact on air quality. Additionally, a model can be used to evaluate the duration of time the product would remain non-compliant before aging processes sufficiently reduce the airborne concentration. These factors may impact risk mitigation plans in the event a product is determined to be non-compliant in one of the various stages of the supply chain.  

How Cardno ChemRisk Can Assist with Questions about Formaldehyde

As a state-of-the-art scientific consulting firm, Cardno ChemRisk is well respected for its leadership in human health risk assessment – including computational modeling and statistical services. Cardno ChemRisk has extensive experience using computational modeling to understand past and future exposures in both occupational and environmental settings, especially in situations where collecting measurements is either impossible or impractical. In addition, Cardno ChemRisk applies a variety of statistical methods to understand the important relationships hidden within an environmental or occupational data set. If you are interested in discussing our recommendations for consumer product formaldehyde exposure modeling in more detail, please contact  This e-mail address is being protected from spambots. You need JavaScript enabled to view it , the Science Advisor and Computational Science Service Area Lead at Cardno ChemRisk.
Hits: 1072
Rate this blog entry:

Posted by on in Health & Environmental Risk Assessment
This posting is the second of a three-part series on formaldehyde emissions from hardwood plywood (HWPW), medium-density fiberboard (MDF), and particleboard (PB), collectively called composite wood products. This series focuses on the benefits of applying computer modeling tools to the interpretation of formaldehyde emission data, and subsequent risk management decisions.

Part 2: Five Facts about Formaldehyde and Composite Wood Products

Formaldehyde is a component of one of the types of glue used to manufacture composite wood products. Formaldehyde emissions have recently been in the spotlight because U.S. EPA posted a pre-publication version of the Emission Standards for Composite Wood Products final rule on July 27, 2016 as Title VI of the Toxic Substance and Control Act (TSCA). The U.S. EPA has associated sufficiently high airborne concentrations of formaldehyde with eye, nose and throat irritation, and possibly some types of cancer with sufficient exposure. These Standards will have a broad impact on manufacturers, distributors, importers and sellers because a wide range of building structures and furniture contain composite wood products.

#1: Wood products made with "no-added formaldehyde" glues still emit naturally occurring formaldehyde

Formaldehyde is a simple, single carbon volatile chemical that comes from many sources including fossil fuel combustion, animal and plant metabolism, as well as consumer product use or off-gassing. Notably, measureable formaldehyde emissions occur from wood-based products manufactured with "formaldehyde-free" glues because formaldehyde is a natural component of wood. For example, a recent emission study of particleboard glued with a no-added formaldehyde resin and a traditional urea-formaldehyde resin estimated standardized emission test chamber air concentrations of 0.023 and 0.063 parts per million (ppm) after 7 days of conditioning, respectively. Thus, even if the use of formaldehyde-based glues was eliminated, indoor air concentrations where wood-based construction materials are used will likely exceed outdoor concentrations.

#2: Indoor formaldehyde concentrations are unlikely to decrease appreciably after the U.S. EPA emission standard is implemented

The U.S. EPA emission standard is likely to reinforce current best manufacturing practice rather than cause a dramatic shift in exposures to formaldehyde. This observation reflects three decades of significant innovation and improvements in resin technology, the natural occurrence of formaldehyde in wood, and adoption of the California formaldehyde emission standard by many manufactures prior to finalization of the EPA standard. In 2012, U.S. EPA drafted a report titled "Formaldehyde from Composite Wood Products: Exposure Assessment" that described the results of various modeling scenarios developed in preparation for the emission standard. The results indicated that reductions in indoor formaldehyde concentrations as a result of the emission standard will decrease by a modest amount for most exposure scenarios. For example, the model indicated that initial formaldehyde concentration would decrease by about 9% in a new single family detached home, 13% in a manufactured home, and 26% in a camper trailer for emissions assumptions similar to the final standard.

#3: The whole is less than the sum of parts

A common misconception is that wood-based sources of formaldehyde to indoor air are additive. The CDC recently published a simplified modeling analysis to assist in the interpretation of laminate flooring emission test results. The CDC model assumes that the addition of a laminate floor source to an indoor space would add to the existing levels by the full amount measured in a test chamber under controlled conditions. Under real-world conditions, formaldehyde sources and room surfaces exhibit a complex set of interactions that reduce the likely impact of a single product to indoor air quality. One important process is the capture and retention of formaldehyde by porous materials such as drywall and furnishings that can reduce peak airborne concentrations. Another important mechanism that limits formaldehyde emissions is the decrease in emissions that occurs when airborne molecules of formaldehyde in a room "push back" on a potential source, sometimes called a "back-pressure" effect. The U.S. EPA exposure assessment report qualitatively discussed the effect of porous materials, and the model quantitatively addressed "back pressure."

#4: Emissions from consumer products diminish over time

Another common misconception is that formaldehyde emissions from wood products remain elevated for a long period of time. This misunderstanding is due in part to voluntary and regulatory emissions testing, which has emphasized the emission potential of newly manufactured products. Under real-world conditions, emissions from composite wood products gradually decay over time as the product ages. For example, the U.S. EPA exposure model performed during the development of the emission standard assumed that formaldehyde concentrations would decrease to "near-zero" concentrations in 10 years or less. Not surprisingly, lower formaldehyde levels are typically found in older as compared to newly constructed residential structures.

#5: Temperature, humidity and fresh air turnover impact air concentration

Increases in ambient environmental factors including temperature and humidity increase formaldehyde emissions. A recent emission study evaluating particleboard resin emissions in an "extreme" environment of 85 F and 75% relative humidity as compared to a typical environment of 77 F and 50% relative humidity found that emissions could be up to 2 to 3-fold higher in the extreme environment. Emissions diminished with time as expected in both environments, and the effects the extreme environment had on emission rate were reversible when typical conditions were restored. The impact of increases in emissions rates with elevated temperature and humidity can be mitigated by steps taken to increase fresh air turnover, such as opening windows or introducing fresh air through mechanical heating and cooling systems. The U.S. EPA considered temperature, humidity, and fresh air turnover during the development of the emission standard.

The above factors represent important considerations when prospectively and retrospectively estimating formaldehyde exposure from composite wood products subject to the new U.S. EPA emission standard. The final installment of this series will explain the benefits of exposure modeling to manufacturers, distributors, importers and sellers of composite wood products.

How Cardno ChemRisk Can Assist with Questions about Formaldehyde

As a state-of-the-art scientific consulting firm, Cardno ChemRisk is well respected for its leadership in human health risk assessment – including computational modeling and statistical services. Cardno ChemRisk has extensive experience using computational modeling to understand past and future exposures in both occupational and environmental settings, especially in situations where collecting measurements is either impossible or impractical. In addition, Cardno ChemRisk applies a variety of statistical methods to understand the important relationships hidden within an environmental or occupational data set. If you are interested in discussing our recommendations for consumer product formaldehyde exposure modeling in more detail, please contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it , Science Advisor and Computational Science Service Area Lead at Cardno ChemRisk.
Hits: 1100
Rate this blog entry:

The Cardno ChemRisk View

We're glad you decided to check us out.

Cardno ChemRisk is a respected scientific consulting firm headquartered in San Francisco with locations and consultants across the U.S. While our website provides a formal look at our capabilities, the Cardno ChemRisk View provides an informal voice too. Various Cardno ChemRisk consultants will be sharing news and views about current trends, happenings and methodologies in the industry. We’ll also highlight activities of interest at Cardno ChemRisk, within confidentiality restrictions of course.

The intent is to keep you informed and enable productive conversations, so please join in and get to know our staff and what makes our people unique. We are enthusiastic about the blogging experience and hope you will return often to learn and share. Stay tuned by subscribing to our blog or clicking on the RSS feed.